
LILLIAD: Connected learning center
Mageshwaran SEKAR

Department of Electronics and Computer Science
Polytech Lille

December 2015

Contents
Acknowledgement 2

1 Introduction 3

2 Scope statement 4
2.1 Preamble . 4
2.2 Problem statement . 4
2.3 Objective . 4
2.4 Materials . 4
2.5 Project phases . 4

3 Implementation 6
3.1 Database . 6
3.2 Website . 7
3.3 Automatic reconfiguration of boards 7

4 Future work 8

Conclusion 9

Annexes 10

References 14

Acknowledgement

This final year project (FYP) will not be a success without the willingness and
commitment from a number of individuals. Thereby, I would like to thank ev-
eryone who assisted me during this project and a special thanks to the following
person.

First of all, I would like to thank my tutors, Mr. BOE Alexander and Mr.
VANTROYS Thomas who supervised me throughout the project. Throughout
the project, they came out to help when we were stuck with problems. Secondly,
I would like to thank the professor from my university, Mr. HOOGSTOEL
Frédéric for helping me out during the conception of a database for the FYP.

I would like to extend a special thanks to my colleague ROCHE François with
whom I worked in parallel to carry out important tasks especially the electronics
parts.

Connected learning center Acknowledgement | 2

1 Introduction
As a 5th year student at Lille Graduate School of Engineering (Polytech’Lille),
it is compulsory to carry out a final year project (FYP). Thus, I chose one of the
Internet of Things (IoT) related project which is entitled Connected Learning
Center since I find myself interested in this field.

This report is a description of the work done from September to December
2015. In the following chapter, details of the scope statement are given. Later
on, I am going to explain the important tasks carried out during the FYP and
give specific technical details. Finally, a conclusion is drawn from the experience.

Connected learning center Introduction | 3

2 Scope statement

2.1 Preamble
The library of University of Lille 1 is in the transformation phase to becoming
LILLIAD Learning Center Innovation by 2016. To enrich the user experience,
the new library will be equipped with multiple sensors (for temperature, air
pollution, etc.) in large scale. However, it requires a lot of effort to implement
and configure these sensors.

2.2 Problem statement
Since the sensors are implemented in large quantity, it is difficult and tiresome
to reconfigure them one by one. And each sensor is configured in a different
manner. Hence, we had to come with a solution that could automate the recon-
figuration process.

2.3 Objective
The main goal of this project is to develop a user interface which allows the
personnel of LILLIAD to use and maintain the deployed network of sensors.
This interface should allow them to configure the sensors by uploading the
required files to the main server. On the other hand, we will also be developing a
reliable communication between the sensor boards and the server through radio
communication (ex:ZigBee) and traditional Ethernet communication in case of
wireless network failure.

2.4 Materials
These following materials are required for this project:

• Apache Web and MySQL database server

• Raspberry Pi 2

• Several ATxmega256A3BU cards

• Sensors for temperature, air pollution, luminosity and noise

2.5 Project phases
This FYP is divided into few important phases.

2.5.1 Reservation of time slot to roll-out configuration

During this phase of the project, we will be developing a Web site, which serves
as a user interface where the admin of LILLIAD would be able to upload files
that will be used later on for configuring the equipment (main board, daugth-
erboard, sensors, etc.) automatically through scripts.

Connected learning center Scope statement | 4

2.5.2 Deploying configuration via network

In this phase, we are going to implement few scripts in Raspberry Pi 2 so that the
configuration of mainboards (MB), daughter boards (DB) and daughter2board
(D2B) could be carried out automatically. The result of the configuration (suc-
cess or failure) will be passed to the main server so that the admin could verify
it and take action in case of failure.

2.5.3 Programming the sensors

The sensors will be implemented in the D2B cards and thus need to be pro-
grammed through Program and Debug Interface (PDI). On the other hand, the
Serial Peripheral Interface (SPI) will be programmed to receive data from the
sensors.

2.5.4 Collecting log and sensor data

The data from sensors will be sent in redundant: through SPI to the mainboard
and through radio communication (ZigBee) to the master Raspberry Pi which
in turn will redirect those data to the server.

Figure 1: Partial architecture of the project

Connected learning center Scope statement | 5

3 Implementation
During the period of September to December 2015, I worked mostly on the
automatic configuration of the boards. At the same time, I worked in parallel
with François ROCHE to configure few important parts of the board and carried
out some basic tests.

3.1 Database
3.1.1 Analyse

First of all, I had to create a database which will be used to store all the
important information regarding the files and the boards that will be used for the
autoconfiguration. After having a few discussions with one of my professors, Mr.
HOOGSTOEL Frédéric, we came up with a relational model for the database.

3.1.2 Relational model

The relational model of the database is based on the following logic:

• A user should have logged in before modifying the database
• A user can play more than one role (but only the admin can modify the

database)
• A user can plan an autoconfiguration
• The autoconfiguration can be implemented in one or more boards but only

with a single file
• The autoconfiguration is carried out during the reserved timeslot
• A board can be configured multiples times but during a different timeslot

This database model is represented in the figure below :

Figure 2: Database for autoconfiguration of boards

Connected learning center Implementation | 6

3.2 Website
The website will be used to upload files for autoconfiguration and determine
the timeslot for the implementation. The website which is under construction
is located here.

3.3 Automatic reconfiguration of boards
3.3.1 Configuration through PDI interface

The Program and Debug Interface (PDI) is an Atmel proprietary interface for
external programming and on-chip debugging of XMEGA devices. It uses pin
interface using the reset pin for clock input PDI_CLK and a dedicated data
pin (PDI_DATA) for input and output. To program the ATXMEGA256A3BU
cards, we connected the GPIO and ground pins of Raspberry to the PDI_CLK,
PDI_DATA and ground pins of ATXMEGA respectively. Before uploading
the file to the ATXMEGA card, we compiled a simple C program using avr-
gcc. Then, we used PDI uploading program found at GitHub to configure the
ATXMEGA256A3BU card.

3.3.2 Automatic file retrieval from the SFTP server

To implement the configuration, we have to be able to retrieve the files auto-
matically from the server. To do this, I had set up a SFTP server from where
the data files will be downloaded. To automatise this, I created a bash script
(refer to annexe) where it will make a query to the MySQL database to retrieve
the file name and the it will connect to the SFTP server and download the given
configuration file.

3.3.3 Automatic configuration of mainboard

For the moment, we were able to reconfigure the mainboard. For this, we execute
the script to retrieve file from SFTP server and execute it through another script
(refer to annexe). This autocompile script will compile the C file, generate an
hexadecimal file (.hex) and upload it to ATXMEGA through PDI. We were able
to make a LED to blink automatically thanks to these scripts.

Connected learning center Implementation | 7

http://193.48.57.161/lilliad
https://github.com/DiUS/xmega-pdi-pi2

4 Future work
For now, we have finished implementing the main board. So, in the coming

weeks, we have to work on the DB and D2B boards to assure a two-way com-
munication (on one hand, a PDI interface to be able to reprogram D2B boards
through the DB board and on the other hand, a SPI interface for sending the
data from the sensors, connected to D2B, up to the main board).

At the same time, we will be configuring Xbee modules (which will be in-
tegrated in the DB or D2B board), to send data to the main server through
radio communication. If this communication encounters problems, then the
data should be sent in a downgraded mode (through serial communication).

Besides, we will be also working on the data collection from the sensors and
sending them to the server through the network so that these values could be
treated and displayed in a website. We have to distinguish differrent data from
different sensors (of temperature, luminosity, etc.) so these values could be
displayed appropriately.

Connected learning center Future work | 8

Conclusion
One of the important part for the automatic configuration of the boards

through the network, is the database. Although, we had a database course
during our 3rd year in Polytech Lille, it was not sufficient to conceptualise the
idea of this project. Thus, with help from Mr Frédéric HOOGSTOEL, I was
able to come up with a relational model for the database.

On the other hand, I had to collaborate with François ROCHE who worked
on the electronic aspect of the project. During this collaboration, we worked
mainly on a proprietary programming interface, PDI.

Despite facing a lot of problems configuring PDI (due to the lack of docu-
mentation), we came out with a solution that enabled us to continue using PDI.
Without the determination, we would not be able to solve the problem.

Connected learning center Conclusion | 9

Annexes

Makefile
export CC = avr-gcc
export MCU = atxmega256a3b #ATXMEGA architecture
export TARGET_ARCH = -mmcu=$(MCU)

export CFLAGS = -Wall -I. -DF_CPU=16000000 -Os
export LDFLAGS = -g $(TARGET_ARCH) -lm -Wl,--gc-sections
export PDI_BIN = /home/anon/PDI/bin/pdi #PDI binary
TARGET = prog

C_SRC = $(wildcard *.c)
OBJS = $(C_SRC:.c=.o)

CLK_GPIO = 7
DATA_GPIO = 8

all: $(TARGET).hex

clean:
rm -f *.o *.hex *.elf *~

%.o:%.c
$(CC) -c $(TARGET_ARCH) $(CFLAGS) $< -o $@

$(TARGET).elf: $(OBJS)
$(CC) $(LDFLAGS) -o $@ $(OBJS)

$(TARGET).hex: $(TARGET).elf
avr-objcopy -j .text -j .data -O ihex $(TARGET).elf $(TARGET).hex

upload: $(TARGET).hex
$(PDI_BIN) -c $(CLK_GPIO) -d $(DATA_GPIO) -a 0x00800000 -F $(TARGET).hex

Connected learning center Annexes | 10

SFTP script
#!/bin/bash

DB_USER=root
DB_PASSWD=mypwd
DB_NAME=lilliad_rpi_conf
HOST=193.48.57.161
QUERY="SELECT fileName FROM file"
SFTP_USER=sftp
SFTP_PASSWD=sftppwd
cmd_list=""
read -ra results <<< $(mysql -h${HOST} -u${DB_USER} \
-p${DB_PASSWD} ${DB_NAME} -e "${QUERY}")

unset results[0] #remove array 0

for rows in "${results[@]}";do
cmd_list+="get ${rows[0]}

"
done

lftp<<END
open sftp://${HOST}:619
user ${SFTP_USER} ${SFTP_PASSWD}
$cmd_list
bye
END

Connected learning center Annexes | 11

Auto compilation script
#!/bin/bash

strA=’Compilation:success.’
strB=’Upload:failed.’
strC=’Upload:success.’
strD=’Compilation:failed.Upload:aborted’
out=’’

make clean
make

if ["$?" -ne 0]; then
echo $strD
exit 1

else
out=$strA

fi

make upload

if ["$?" -ne 0]; then
echo outstrB
exit 1

else
echo outstrC

fi

Connected learning center Annexes | 12

Sample C file
#include <avr/io.h>
#include <util/delay.h>

int main (void){
int i;
PORTB.DIR= 1;
while(1){
PORTB.OUT=0;
_delay_ms(1000);
PORTB.OUT= 1;
_delay_ms(1000);

}
}

Connected learning center Annexes | 13

References
[1] Unknown author. Bash scripting tutorial. http://linuxconfig.org/

bash-scripting-tutorial.

[2] Unknown author. Basic Makefile for AVR-GCC. http://arduino.
stackexchange.com/questions/12114/basic-makefile-for-avr-gcc.

[3] Unknown author. GPIO: Models A+, B+ and Raspberry Pi 2. https://
www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/.

[4] Unknown author. PDI programming. http://www.atmel.com/webdoc/
avrdragon/avrdragon.pdi_description.html.

[5] Sandra HENRY-STOCKER. Unix: Flexibly moving files with
lftp. http://www.itworld.com/article/2833203/operating-systems/
unix--flexibly-moving-files-with-lftp.html.

http://linuxconfig.org/bash-scripting-tutorial
http://linuxconfig.org/bash-scripting-tutorial
http://arduino.stackexchange.com/questions/12114/basic-makefile-for-avr-gcc
http://arduino.stackexchange.com/questions/12114/basic-makefile-for-avr-gcc
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/
http://www.atmel.com/webdoc/avrdragon/avrdragon.pdi_description.html
http://www.atmel.com/webdoc/avrdragon/avrdragon.pdi_description.html
http://www.itworld.com/article/2833203/operating-systems/unix--flexibly-moving-files-with-lftp.html
http://www.itworld.com/article/2833203/operating-systems/unix--flexibly-moving-files-with-lftp.html

	Acknowledgement
	Introduction
	Scope statement
	Preamble
	Problem statement
	Objective
	Materials
	Project phases

	Implementation
	Database
	Website
	Automatic reconfiguration of boards

	Future work
	Conclusion
	Annexes
	References

