Intelligence embarque IMA5 2022/2023 G5 : Différence entre versions
(→Expérimentation) |
(→Test du modèle) |
||
Ligne 56 : | Ligne 56 : | ||
− | =Test du modèle= | + | ==Test du modèle== |
Une fois que nous avons construit nos dataset, nous avons réalisé quelques quelques expériences pour savoir si | Une fois que nous avons construit nos dataset, nous avons réalisé quelques quelques expériences pour savoir si |
Version du 12 décembre 2022 à 11:44
Sommaire
Contrôle gestuel pour la domotique
Présentation
L'idée consiste à développer une IA embarquée sur un microcontrôleur STM32 capable de reconnaître des gestes fixes sans mouvements de main, dans le but de contrôler certrain des systèmes domotiques.
En effet, dans le contexte sanitaire actuel (Covid), il serait intéressant de développer des systèmes de contrôle sans contact, pour éviter la propagation du virus. Par exemple, ouverture de porte, allumage des lumières, commander un ascenseur dans un environnement public ou hospitalier.
On pourrait aussi imaginer une application plus domestique à destination du grand public, qui controlerait une ampoule à variateur d'intensité, où notre système permettrait d'allumer, d'éteindre et de faire varier l'intensité de l'ampoule.
Gestes à implémenter
Pour l'environnement hospitalier
- Main ouverte pour allumer l'ampoule
- Poing fermé pour éteindre l'ampoule
- Signe OK avec le pouce et l'index pour l'ouverture/fermeture de porte
- Numérotation de l'étage souhaité avec les doigts pour l'ascenseur
Pour la domotique (ampoule à variateur)
- Main ouverte pour allumer l'ampoule
- Poing fermé pour éteindre l'ampoule
- Pouce vers le haut pour augmenter l'intensité
- Pouce vers le bas pour diminuer l'intensité
PoC
Pour la démonstration, l'idée pour le moment serait à minima de pouvoir contrôler l'allumage et l'extinction d'une LED.
Si c'est possible, nous afficherons dans un terminal le geste detecté pour pouvoir tester l'implémentation de plusieurs gestes.
Réalisation
Récupération d'un dataset avec le capteur ToF
Prise en main des outils logiciel
La première étape a été de prendre en main le kit STM32 Nucleo+Expansion board (capteurs ToF 8x8). Sous STM32Cube IDE, nous avons donc récupéré le code fourni, l'avons compilé puis nous avons téléversé l'exécutable sur le microcontrôleur.
Une fois l'exécutable fonctionnel sur la board, nous scrutons grâce à l'utilitaire minicom la liaison série, les données récupérées par les capteurs. Ces données
sont affichées sous la formes d'une matrice 8x8, où les valeurs sont séparées par le caractère suivant : |
.
Dans un second temps, nous nous sommes penchés sur la préparation des données pour notre application, où nous avons choisi de les classer sur un axe de taille de 64 valeurs (0 à 63), puisque la forme matricielle n'est pas utile dans notre cas.
Pour cela, nous avons modifié la fonction print_result dans le fichier app_x-cube-tof.c d'une manière que les délimiteurs soient le caractéres ;
.
La modification du code est faite sous STM32Cube IDE.
Sous NanoEdge, nous avons vérifié la bonne réception des signaux (des valeurs des capteurs); où ces derniers repectent bien la forme attendues.
Expérimentation
Dans un second temps, nous avons choisi d'enregistrer 3 signaux : le signe OK, le signe main ouverte, et le signe poing fermé. Après l'optimisation du dataset durant la phase de benchmarking, l'objectif était de vérifier si notre librairie ainsi construite remplissait son rôle, c'est à dire réussir à identifier les 3 gestes choisis.
Nous avons à ce stade rencontré plusieurs problèmes et pu identifier certaines erreurs à éviter :
- Tout d'abord, lors de la phase d'émulation de la librairie pour vérifier la pertinence du dataset, il ne nous était pas possible de traiter des données récupérées en temps réel par le port USB, à cause d'une erreur de formattage des données. Nous avons pour cela dû changer le séparateur (le point virgule posait problème), et modifier quelque peu la fonction de print série
- Ensuite, nous avons remarqué l'intérêt de prendre à minima une centaine de valeur pour avoir
Pas pertinent de faire plusieurs angles et plusieurs distances pour chaque signe car porte à confusion le modèle. Passage en plus de camarade dans notre dos. Ca aurait été possible mais il aurait fallu prendre beaucoup plus de données. Nous avons donc réenregistrer plusieurs dataset prenant en compte ces remarques.
Voici quelques images qui montrent les gestes et les signes lors de la construction de notre modèle :
Test du modèle
Une fois que nous avons construit nos dataset, nous avons réalisé quelques quelques expériences pour savoir si