Éolienne à axe vertical
Introduction
Projet éolien : Dans le cadre de notre formation d’ingénieur, nous devons réaliser un projet de fin d’études afin de pouvoir gérer les différentes parties d’un véritable projet en entreprise, à savoir l’analyse, la modélisation, la conception et la gestion des coûts. De nos jours, l’avenir énergétique dépend en majeur partie des énergies renouvelables. C’est pourquoi nous nous sommes orientés vers le projet consistant à rendre fonctionnelle une éolienne à axe vertical de type Savonius. C’est-à-dire, lui permettre d’alimenter des appareils de faible puissance, par le biais d’une batterie.
Présentation du projet
Contexte
Dans le cadre d’un projet d’innovation, Madame Hautekeete responsable du pôle développement durable du campus de l’université Lille 1, a souhaité la conception et la construction d’une éolienne. Celle-ci aura pour but de promouvoir les nouvelles technologies dites propres mais également de valoriser le travail des étudiants et sensibiliser les gens vis-à-vis des énergies propres.
C’est pourquoi, le département mécanique de Polytech’Lille a conçu une éolienne de type Savonius (axe vertical). Elle devrait à terme être montée sur le toit de la MDE de l’université de Lille1.
Cahier des charges
L’objectif principal du projet est d’équiper l’éolienne des éléments permettant la conversion de l’énergie mécanique en énergie électrique dans le but de recharger une batterie.
Dans un premier temps, il est nécessaire de caractériser l’éolienne afin de dimensionner les éléments constituants la chaîne, c'est-à-dire, estimer la puissance théorique développée par l’éolienne. L’éolienne mise à notre disposition est une éolienne de type domestique, par conséquent son domaine de puissance est de l’ordre de quelques dizaines de watts. Qui plus est, il est important de déterminer le coefficient de puissance de l’éolienne (Cp) car il est représentatif du rendement de l’éolienne.
En parallèle, il est essentiel de modéliser l’ensemble de l’éolienne afin d’avoir une approche théorique. Ainsi, il conviendra d'utiliser la Représentation Énergétique Macroscopique.
Enfin, après avoir commandé et réceptionné le matériel nécessaire, il sera nécessaire de procéder au montage et aux essais.
L'énergie éolienne et le coefficient de puissance
L’énergie éolienne dépend directement du vent. Cette énergie peut être utilisée de manières différentes. Dans nôtres cas, il s’agit de produire de l’énergie électrique. Le vent est de l’air en mouvement, et comme tout corps en mouvement on peut lui associer une énergie cinétique. Celle-ci est fonction de la masse et de la vitesse du volume d’air. En considérant que la masse volumique de l’air est constant, on peut alors exprimer l’énergie cinétique du vent en fonction de sa vitesse.
Ec=12*m*v2 avec m=ρ*V
m :masse du volume d'air(en kg)
v :vitesse instantanée du vent (en m/s)
Ec :énergie cinétique (en joules)
La puissance théorique récupérable du vent contenue dans un cylindre de section S s’exprime de la façon suivante.
Pcinétique=0.5*ρ*S*v3
ρ :masse volumique de l'air
S :surface des pales de l'éolienne(en m2)
v :vitesse du vent (en m/s)
Cette puissance est bien sur théorique, il est impossible qu’elle soit récupérée telle quelle par l’éolienne car cela reviendrait à stopper le vent et ne pas prendre en compte les écoulements. Un coefficient intervient dans l’expression de la puissance au niveau du rotor, il s’agit du coefficient de puissante (Cp). Le Cp dépend directement de la variable λ qui elle, dépend de la vitesse du vent et de la vitesse au bout des pales d’où l’expression suivante.
λ=R*⍵/vvent
R :rayon des pales (en m)
w :vitesse de rotation (en rad/s)
vvent :vitesse du vent (en m/s)
D’après la limite de Betz, la puissance théorique maximale récupérable est égale à 16/27 de la puissance du vent qui traverse l’éolienne, ainsi le Cp ne peut dépasser cette valeur.
Au niveau du rotor, on peut exprimer la puissance disponible sur l’arbre afin de déduire le coefficient de puissance.
P=0.5*Cp(λ)*ρ*S*vvent3=C*⍵
C :couple au niveau de l'arbre (en N.m)
w :vitesse de rotation (en rad/s)
Cp(λ)=Puissance disponible sur l'arbre/Puissance cinétique(récupérable)
Cp(λ)=(C*⍵)/(0.5*ρ*S*v3)
Matériel à disposition
- éolienne à axe vertical ( 2 pales) couplée à une MCC
- Pales :
-> aluminium
-> Surface = 0.325 m2
- Liaison pivot de l'arbre :
-> Palier lisses
-> Coussinets en bronze auto lubrifié
L’éolienne de Savonius
L’éolienne Savonius
Actuellement, des champs d’éoliennes (onshore et offshore) à axe horizontal se développent partout dans le monde. Les puissances mises en jeu sont de l’ordre du méga watt. Il existe aussi les éoliennes à axe vertical, en l’occurrence l’éolienne Savonius, qui présente de nombreuses qualités mais pour des échelles de production d’énergie plus modestes.
Elles sont en général méconnues alors qu’elles sont peu encombrantes, peu bruyantes et n’ont pas de contraintes sur la direction du vent contrairement aux éoliennes à axe horizontal. De plus, elles démarrent à faible vitesse de vent et ont un couple élevé au démarrage.
Ses inconvénients majeurs sont son faible rendement, sa masse et son couple sinusoïdal, qui plus est, le coefficient de puissance est très difficile à caractériser.
Sur l’image ci-dessus, on s’aperçoit que le Cp est compris entre 0 et 1.5 pour les éoliennes Savonius.
Première phase du projet
Prise en main du projet
La première phase de notre projet a été essentiellement des recherches pour se familiariser avec l’énergie éolienne et en particulier les éoliennes à axe vertical.
Dimensionnement
Pour dimensionner une chaines de conversion électrotechniques, il est primordial de déterminer les puissances mises en jeu. On s’est aperçu que l’expression de la puissance reste la même pour tout type d’éolienne. En appliquant la formule cité précédemment, on a déterminé la puissance théorique récupérable, elle est égale à 482W (avec une vitesse de vent de 50 km/h et une surface de pales égale à 0.325m2), or celle-ci ne prend pas en compte le Cp. Celui-ci ne dépasse 0,15 pour une éolienne Savonius. C’est pourquoi, la puissance maximale au rotor est en théorie de 72W pour une vitesse de vent élevée. Selon des études menées dans la région Nord, la vitesse moyenne du vent la plus rencontrée est de 15km/h, ainsi la puissance développée par notre éolienne serait en théorie de 47W.
Résolution de certaines contraintes mécaniques
Le bâtiment P2 de l'université de Lille 1 dispose d'une soufflerie permettant de réaliser des tests réels sur notre éolienne visant à déterminer le Cp, et surtout la valeur de Lambda pour laquelle ce Cp est maximal.
- Soufflerie du bâtiment P2
Pour des règles de sécurités et de performances, il était nécessaire de modifier le bâti de l’éolienne. En effet, les pales n’étaient pas alignés avec l’axe de la soufflerie et les efforts liés à la mise en rotation des pales rendaient la structure instable et causait un réel danger. C’est pourquoi, l’éolienne a été surélevée, une structure plus stable a été conçut au sein du département mécanique. Cette opération a été réalisée début janvier car elle nécessitait une machine d’usinage qui a été livré à cette date.
- Nouvelle structure du bati
Nous avons également constaté un frottement important lié entre autre au problème d'alignement axial entre l'axe de la machine électrique et l'axe de l’arbre des pales de l'éolienne, liées entre elles par un manchon d'accouplement flexible.
Nous avons pu corriger ce problème en changeant le manchon, et surtout en perçant des trous de vis plus larges pour permettre d'ajuster la position de la machine électrique avec précision et réduire au maximum l'écart entre les axes du système. Cette solution a nettement amélioré les problèmes de frottements mécaniques de l'éolienne et donc augmenté ses performances.
- Nouvelle alignement entre l'arbre des pales et de l'arbre du moteur
Solutions retenues
Après différentes recherches, nous avons retenu deux solutions principales :
La première solution envisagée consiste à mettre un réducteur devant une MCC, et d’utiliser ce moteur comme génératrice de notre système.
Nous avons réalisé sous Matlab, la simulation du système en utilisant la représentation énergétique macroscopique (REM).
Avantages :
- Possibilité de mettre en place une MPPT avec le degré de liberté de commande de la MCC.
- Simplicité de la conversion énergie mécanique/énergie électrique dans la MCC.
- Tension en sortie directement utilisable pour charger une batterie.
Inconvénients :
- Faible rendement d’une MCC en génératrice.
La deuxième solution est l’utilisation comme génératrice d’une machine synchrone à aimants permanents (Brushless).
Avantages :
- Fonctionnement triphasé, assurant un meilleur rendement.
- Pas besoin d’être relié au réseau en brushless, utilisation semblable à une MCC.
Inconvénients :
- Commande beaucoup plus complexe pour la MPPT.
stratégie MPPT
Stratégie MPPT :
Comme on peut le voir sur cette courbe, il existe différents points où la puissance est maximale en fonction de la vitesse du vent. On augmente donc le rendement du système en installant une stratégie MPPT qui en fonction de la vitesse du vent va commander la génératrice pour la faire tourner à la vitesse ou le Cp sera maximal. Pour concevoir cette régulation, nous devons connaitre exactement la courbe du Cp(λ) de notre éolienne.
Dimensionnement
La puissance théorique récupérable est égale à 482W (avec une vitesse de vent de 50 km/h et une surface égale à 0.3m2 ), or celle ci ne prend pas en compte le Cp. Celui-ci ne dépasse 0,15 pour une éolienne Savonius. C’est pourquoi, la puissance maximale au rotor est en théorie de 72W.
Ainsi nous avons dimensionné un moteur de puissance égale à 100W, en prenant en compte les pertes liées au réducteur. La vitesse nominale du moteur et le rapport de réduction seront déterminés une fois les tests effectués en soufflerie.
Avancement du projet
- Familiarisation avec l’énergie éolienne, lecture de documentations
- Premiers tests de l’éolienne telle quelle
- Visite de la soufflerie du bâtiment P2
- Début des discussions avec le département mécanique pour la réalisation d'une structure permettant d'effectuer les tests poussé sur l'eolienne
- Dimensionnement, et choix d'une chaîne de conversion